Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice ; : 237-278, 2021.
Article in English | Scopus | ID: covidwho-2285530

ABSTRACT

In this chapter we will focus on the potential applications of IgY in human medicine, summarizing some of in vivo and in vitro studies that support them. Respiratory infections caused by viruses and bacteria have a major impact in human health, and are associated with other major underlying conditions, such as cardiopulmonary disorders. Influenza and SARS-CoV-2 are good examples of how the effective airborne transmission via droplets and aerosols enables rapid viral spread, that ultimately lead to seasonal epidemic or pandemic outbreaks. These together with a number of emerging viral disease urges the development of vaccine alternatives where IgY immnunotherapies could be included. Moreover oral passive neutralization of bacteria causing dental caries or even chronic gastric inflamation leading to cancer has been sucessfully shown with IgY and will be presented herein. Finally, the robustness of IgY to neutralize lethal toxins and venoms will also be covered. © Springer Nature Switzerland AG 2021. All rights reserved.

2.
Viruses ; 15(3)2023 03 09.
Article in English | MEDLINE | ID: covidwho-2252521

ABSTRACT

Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.


Subject(s)
Cattle Diseases , Coronavirus, Bovine , Pregnancy , Animals , Cattle , Female , Chickens , Powders , Animals, Newborn , Antibodies, Viral/analysis , Diarrhea/prevention & control , Diarrhea/veterinary , Cattle Diseases/prevention & control
3.
Front Immunol ; 13: 1074077, 2022.
Article in English | MEDLINE | ID: covidwho-2198913

ABSTRACT

Introduction: An approach toward novel neutralizing IgY polyclonal antibodies (N-IgY-pAb) against SARS-CoV-2 S-ECD was developed. Material and methods: The novel N-IgY-pAb and its intranasal spray response against the wild type ("'WH-Human 1") SARS-CoV-2 virus, variants of Delta or Omicron were up to 98%. Unique virus peptides binding to N-IgY-pAb were screened by a SARS-CoV-2 proteome microarray. Results: Seventeen mutation-free peptides with a Z-score > 3.0 were identified as potent targets from a total of 966 peptides. The new findings show that one is in the RBM domain (461LKPFERDISTEIYQA475 ), two are in the NTD domain (21RTQLPPAYTNSFTRG35, 291CALDPLSETKCTLKS305) four are in the C1/2-terminal (561PFQQFGRDIADTTDA575,571DTTDAVRDPQTLEIL585,581TLEILDITPCSFGGV595, 661ECDIPIGAGICASYQ675 ), three are in the S1/S2 border (741YICGDSTECSNLLLQ755, 811KPSKRSFIEDLLFNK825, 821LLFNKVTLADAGFIK835) one target is in HR2 (1161SPDVDLGDISGINAS1175) and one is in HR2-TM (1201QELGKYEQYIKWPWY1215). Moreover, five potential peptides were in the NSP domain: nsp3-55 (1361SNEKQEILGTVSWNL1375), nsp14-50 (614HHANEYRLYLDAYNM642, ORF10-3 (21MNSRNYIAQVDVVNFNLT38, ORF7a-1(1MKIILFLALITLATC15) and ORF7a-12 (1116TLCFTLKRKTE121). Discussion and conclusion: We concluded that the N-IgY-pAb could effectively neutralize the SARS-CoV-2. The new findings of seventeen potent conserved peptides are extremely important for developing new vaccines and "cocktails" of neutralizing Abs for efficient treatments for patients infected with SARS-CoV-2.


Subject(s)
COVID-19 , Humans , Animals , Chickens , Proteome , SARS-CoV-2 , Antibodies, Neutralizing , Peptides
4.
Viruses ; 14(10)2022 09 26.
Article in English | MEDLINE | ID: covidwho-2043989

ABSTRACT

Background: Some viruses cause outbreaks, which require immediate attention. Neutralizing antibodies could be developed for viral outbreak management. However, the development of monoclonal antibodies is often long, laborious, and unprofitable. Here, we report the development of chicken polyclonal neutralizing antibodies against SARS-CoV-2 infection. Methods: Layers were immunized twice with 14-day intervals using the purified receptor-binding domain (RBD) of the S protein of SARS-CoV-2/Wuhan or SARS-CoV-2/Omicron. Eggs were harvested 14 days after the second immunization. Polyclonal IgY antibodies were extracted. Binding of anti-RBD IgYs was analyzed by immunoblot and indirect ELISA. Furthermore, the neutralization capacity of anti-RBD IgYs was measured in Vero-E6 cells infected with SARS-CoV-2-mCherry/Wuhan and SARS-CoV-2/Omicron using fluorescence and/or cell viability assays. In addition, the effect of IgYs on the expression of SARS-CoV-2 and host cytokine genes in the lungs of Syrian Golden hamsters was examined using qRT-PCR. Results: Anti-RBD IgYs efficiently bound viral RBDs in situ, neutralized the virus variants in vitro, and lowered viral RNA amplification, with minimal alteration of virus-mediated immune gene expression in vivo. Conclusions: Altogether, our results indicate that chicken polyclonal IgYs can be attractive targets for further pre-clinical and clinical development for the rapid management of outbreaks of emerging and re-emerging viruses.


Subject(s)
COVID-19 , Animals , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Chickens , SARS-CoV-2 , Egg Yolk , RNA, Viral , Antibodies, Viral , Antibodies, Neutralizing , Antibodies, Monoclonal , Antiviral Agents , Cytokines
5.
Biol Pharm Bull ; 45(8): 1022-1026, 2022.
Article in English | MEDLINE | ID: covidwho-1968824

ABSTRACT

The emu is the second largest ratite; thus, their sera and egg yolks, obtained after immunization, could provide therapeutic and diagnostically important immunoglobulins with improved production efficiency. Reliable purification tools are required to establish a pipeline for supplying practical emu-derived antibodies, the majority of which belongs to the immunoglobulin Y (IgY) class. Therefore, we generated a monoclonal secondary antibody specific to emu IgY. Initially, we immunized an emu with bovine serum albumin multiply haptenized with 2,4-dinitrophenyl (DNP) groups. Polyclonal emu anti-DNP antibodies were partially purified using conventional precipitation method and used as antigen for immunizing a BALB/c mouse. Splenocytes were fused with myeloma cells and a hybridoma clone secreting a desirable secondary antibody (mAb#2-16) was established. The secondary antibody bound specifically to emu-derived IgY, distinguishing IgYs from chicken, duck, ostrich, quail, and turkey, as well as human IgGs. Affinity columns immobilizing the mAb#2-16 antibodies enabled purification of emu IgY fractions from sera and egg yolks via simple protocols, with which we succeeded in producing IgYs specific to the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spike protein with a practical binding ability. We expect that the presented purification method, and the secondary antibody produced in this study, will facilitate the utilization of emus as a novel source of therapeutic and diagnostic antibodies.


Subject(s)
COVID-19 , Dromaiidae , Animals , Antibodies, Monoclonal , COVID-19 Testing , Chickens/metabolism , Dromaiidae/metabolism , Humans , Immunoglobulins , Mice , SARS-CoV-2
6.
Front Immunol ; 13: 881604, 2022.
Article in English | MEDLINE | ID: covidwho-1933666

ABSTRACT

Within the framework of the current COVID-19 pandemic, there is a race against time to find therapies for the outbreak to be controlled. Since vaccines are still tedious to develop and partially available for low-income countries, passive immunity based on egg-yolk antibodies (IgY) is presented as a suitable approach to preclude potential death of infected patients, based on its high specificity/avidity/production yield, cost-effective manufacture, and ease of administration. In the present study, IgY antibodies against a recombinant RBD protein of SARS-CoV-2 were produced in specific-pathogen-free chickens and purified from eggs using a biocompatible method. In vitro immunoreactivity was tested, finding high recognition and neutralization values. Safety was also demonstrated prior to efficacy evaluation, in which body weight, kinematics, and histopathological assessments of hamsters challenged with SARS-CoV-2 were performed, showing a protective effect administering IgY intranasally both as a prophylactic treatment or a post-infection treatment. The results of this study showed that intranasally delivered IgY has the potential to both aid in prevention and in overcoming COVID-19 infection, which should be very useful to control the advance of the current pandemic and the associated mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies , COVID-19/prevention & control , Chickens , Humans , Immunoglobulins , Pandemics
7.
Front Immunol ; 13: 899617, 2022.
Article in English | MEDLINE | ID: covidwho-1903023

ABSTRACT

COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Rats , Spike Glycoprotein, Coronavirus
8.
AMB Express ; 12(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1837317

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, a series of vaccines, antibodies and drugs have been developed to combat coronavirus disease 2019 (COVID-19). High specific antibodies are powerful tool for the development of immunoassay and providing passive immunotherapy against SARS-CoV-2 and expected with large scale production. SARS-CoV-2 S1 protein was expressed in E. coli BL21 and purified by immobilized metal affinity chromatography, as antigen used to immunize hens, the specific IgY antibodies were extracted form egg yolk by PEG-6000 precipitation, and the titer of anti-S1 IgY antibody reached 1:10,000. IgY single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and the IgY-scFv showed high binding sensitivity and capacity to S1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/µL. The docking study showed that the multiple epitopes on the IgY-scFv interacted with multiple residues on SARS-CoV-2 S1 RBD to form hydrogen bonds. This preliminary study suggests that IgY and IgY-scFv are suitable candidates for the development of immunoassay and passive immunotherapy for COVID-19 to humans and animals.

9.
J Appl Microbiol ; 132(3): 2421-2430, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1488216

ABSTRACT

AIMS: COVID-19 pandemic caused by SARS-CoV-2 has become a public health crisis worldwide. In this study, we aimed at demonstrating the neutralizing potential of the IgY produced after immunizing chicken with a recombinant SARS-CoV-2 spike protein S1 subunit. METHODS AND RESULTS: E. coli BL21 carrying plasmid pET28a-S1 was induced with IPTG for the expression of SARS-CoV-2 S1 protein. The recombinant His-tagged S1 was purified and verified by SDS-PAGE, Western blot and biolayer interferometry (BLI) assay. Then S1 protein emulsified with Freund's adjuvant was used to immunize layer chickens. Specific IgY against S1 (S1-IgY) produced from egg yolks of these chickens exhibited a high titer (1:25,600) and a strong binding affinity to S1 (KD  = 318 nmol L-1 ). The neutralizing ability of S1-IgY was quantified by a SARS-CoV-2 pseudotyped virus-based neutralization assay with an IC50  value of 0.99 mg ml-1 . In addition, S1-IgY exhibited a strong ability in blocking the binding of SARS-CoV-2 S1 to hACE2, and it could partially compete with hACE2 for the binding sites on S1 by BLI assays. CONCLUSIONS: We demonstrated here that after immunization of chickens with our recombinant S1 protein, IgY neutralizing antibodies were generated against the SARS-CoV-2 spike protein S1 subunit; therefore, showing the potential use of IgY to block the entry of this virus. SIGNIFICANCE AND IMPACT OF THE STUDY: IgY targeting S1 subunit of SARS-CoV-2 could be a promising candidate for pre- and post-exposure prophylaxis or treatment of COVID-19. Administration of IgY-based oral preparation, oral or nasal spray may have profound implications for blocking SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/pharmacology , Immunoglobulins/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects , Animals , COVID-19 , Chickens , Egg Yolk/immunology , Humans , Pandemics
10.
Int Immunopharmacol ; 96: 107797, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1300822

ABSTRACT

Specific antibodies against SARS-CoV-2 structural protein have a wide range of effects in the diagnose, prevention and treatment of the COVID-19 epidemic. Among them, egg yolk immunoglobulin Y (IgY), which has high safety, high yield, and without inducing antibody-dependent enhancement, is an important biological candidate. In this study, specific IgY against the conservative nucleocapsid protein (NP) of SARS-CoV-2 was obtained by immunizing hens. Through a series of optimized precipitation and ultrafiltration extraction schemes, its purity was increased to 98%. The hyperimmune IgY against NP (N-IgY) at a titer of 1:50,000 showed strong NP binding ability, which laid the foundation of N-IgY's application targeting NP. In an in vitro immunoregulatory study, N-IgY (1 mg/mL) modulated NP-induced immune response by alleviating type II interferon secretion stimulated by NP (20 µg/mL). In summary, N-IgY can be mass produced by achievable method, which endows it with potential value against the current COVID-19 pandemic.


Subject(s)
Antibodies/immunology , Antiviral Agents/immunology , COVID-19/immunology , Immunoglobulins/immunology , Immunologic Factors/immunology , Interferon-gamma/metabolism , SARS-CoV-2/immunology , Animals , Antibodies/pharmacology , Antiviral Agents/pharmacology , COVID-19/therapy , Chickens , Drug Development , Egg Yolk/chemistry , Egg Yolk/metabolism , Humans , Immunity , Immunoglobulins/pharmacology , Immunologic Factors/pharmacology , Immunomodulation , In Vitro Techniques , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism
11.
Front Immunol ; 12: 696003, 2021.
Article in English | MEDLINE | ID: covidwho-1299397

ABSTRACT

Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Bacterial Infections/drug therapy , Chickens/immunology , Immunoassay , Immunoglobulins/therapeutic use , Parasitic Diseases/drug therapy , Virus Diseases/drug therapy , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/immunology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Antibody Formation , Antibody Specificity , Bacterial Infections/diagnosis , Bacterial Infections/immunology , Bacterial Infections/virology , Humans , Immunoglobulins/biosynthesis , Immunoglobulins/immunology , Parasitic Diseases/diagnosis , Parasitic Diseases/immunology , Parasitic Diseases/virology , Predictive Value of Tests , Virus Diseases/diagnosis , Virus Diseases/immunology , Virus Diseases/virology
12.
Int Immunopharmacol ; 90: 107172, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065214

ABSTRACT

The SARS-CoV-2 virus is still spreading worldwide, and there is an urgent need to effectively prevent and control this pandemic. This study evaluated the potential efficacy of Egg Yolk Antibodies (IgY) as a neutralizing agent against the SARS-CoV-2. We investigated the neutralizing effect of anti-spike-S1 IgYs on the SARS-CoV-2 pseudovirus, as well as its inhibitory effect on the binding of the coronavirus spike protein mutants to human ACE2. Our results show that the anti-Spike-S1 IgYs showed significant neutralizing potency against SARS-CoV-2 pseudovirus, various spike protein mutants, and even SARS-CoV in vitro. It might be a feasible tool for the prevention and control of ongoing COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/therapy , Chickens/immunology , Egg Yolk/metabolism , Immunoglobulins/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antibodies, Neutralizing/therapeutic use , Humans , Immunoglobulins/therapeutic use , Mutation/genetics , Pandemics , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
Vaccines (Basel) ; 8(4)2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-902683

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 and causes severe and often fatal acute respiratory illness in humans. No approved prophylactic and therapeutic interventions are currently available. In this study, we have developed egg yolk antibodies (immunoglobulin Y (IgY)) specific for MERS-CoV spike protein (S1) in order to evaluate their neutralizing efficiency against MERS-CoV infection. S1-specific immunoglobulins were produced by injecting chickens with purified recombinant S1 protein of MERS-CoV at a high titer (5.7 mg/mL egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated that the IgY antibody specifically bound to the MERS-CoV S1 protein. Anti-S1 antibodies were also able to recognize MERS-COV inside cells, as demonstrated by an immunofluorescence assay. Plaque reduction and microneutralization assays showed the neutralization of MERS-COV in Vero cells by anti-S1 IgY antibodies and non-significantly reduced virus titers in the lungs of MERS-CoV-infected mice during early infection, with a nonsignificant decrease in weight loss. However, a statistically significant (p = 0.0196) quantitative reduction in viral antigen expression and marked reduction in inflammation were observed in lung tissue. Collectively, our data suggest that the anti-MERS-CoV S1 IgY could serve as a potential candidate for the passive treatment of MERS-CoV infection.

14.
Int Immunopharmacol ; 85: 106654, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-505643

ABSTRACT

The present state of diagnostic and therapeutic developmental race for vaccines against the SARS CoV-2 (nCOVID-19) focuses on prevention and control of this global pandemic which also represents a critical challenge to the global health community. Although development of novel vaccines can prevent the SARS CoV-2 infections, it is still impeded by several other factors and therefore novel approaches towards treatment and management of this disease is the urgent need. Passive immunotherapy plays a vital role as a possible alternative to meet this challenge and among various antibody sources, chicken egg yolk antibodies (IgY) can be used as an alternative to mammalian antibodies which have been previously studied against SARS CoV outbreak in China. In this review, we discuss the strategies for the use of chicken egg yolk (IgY) antibodies in the development of rapid diagnosis and immunotherapy against SARS CoV-2. Also, IgY antibodies have previously been used against various respiratory bacterial and viral infections in humans and animals. Compared to mammalian antibodies (IgG), chicken egg yolk antibodies (IgY) have greater binding affinity to specific antigens, ease of extraction and lower production costs, hence possessing remarkable pathogen-neutralizing activity of pathogens in respiratory and lungs. We provide an overall importance for the use of monoclonal chicken egg yolk antibodies (IgY) using phage display method describing their potential passive immunotherapeutic application for the treatment and prevention of SARS CoV-2 infection which is simple, fast and safe way of approach for treating patients effectively.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Cell Surface Display Techniques , Clinical Laboratory Techniques , Coronavirus Infections , Immunoglobulins/immunology , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibody Affinity , Antibody Specificity , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Chickens , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Egg Yolk , Forecasting , Humans , Immunization, Passive , Mammals/immunology , Models, Molecular , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , RNA, Viral/genetics , SARS-CoV-2 , Single-Chain Antibodies/immunology , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
15.
Exp Ther Med ; 20(1): 151-158, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-400233

ABSTRACT

The world is facing one of the major outbreaks of viral infection of the modern history, however, as vaccine development workflow is still tedious and can not control the infection spreading, researchers are turning to passive immunization as a good and quick alternative to treat and contain the spreading. Within passive immunization domain, raising specific immunoglobulin (Ig)Y against acute respiratory tract infection has been developing for more than 20 years. Far from being an obsolete chapter we will revise the IgY-technology as a new frontier for research and clinic. A wide range of IgY applications has been effectively confirmed in both human and animal health. The molecular particularities of IgY give them functional advantages recommending them as good candidates in this endeavor. Obtaining specific IgY is sustained by reliable and nature friendly methodology as an alternative for mammalian antibodies. The aria of application is continuously enlarging from bacterial and viral infections to tumor biology. Specific anti-viral IgY were previously tested in several designs, thus its worth pointing out that in the actual COVID-19 pandemic context, respiratory infections need an enlarged arsenal of therapeutic approaches and clearly the roles of IgY should be exploited in depth.

SELECTION OF CITATIONS
SEARCH DETAIL